
Generating Global IDs
Patrick Lambert
[http://dendory.net]

September 28, 2014

Abstract

This white paper describes the process of generating Global IDs
for use in computer applications, including popular methods of doing
so, pros and cons, along with practical coding examples.

Generating Global IDs 1

1 Introduction

The creation of Identification strings (IDs) is a requirement that
many programmers and software engineers face at some point. Whether
it's to identify users, database records, collections of objects or sessions
in a web app, IDs are used everywhere. As a result, there have been
many different methods invented for creating them, some more effec-
tive than others.

This subject was deemed so important to the construct of the Internet
that several methods were devised to make a Universally Unique ID
(UUID) described in RFC 4122 [1]. This method will be explored, along
with other popular methods, in order to come up with various ways
of creating these IDs. No one way is best for every case. Instead,
exploration of these various methods shows that they all have their
strengths and weaknesses.

1.1 Audience

The goal of this document is to offer knowledge for anyone who may
have a need to create IDs. This may include junior programmers who
are developing software applications, web developers making web apps
having to track users, or even system administrators scripting against
databases and managed user groups. It also attempts to explain some
of the design decisions behind each method of creation, giving insights
into why one way is best for a particular purpose.

For the purpose of this document, code samples are written in PHP.
However, most if not all methods described here can be implemented
in any language.

1.2 Expectations

The requirement of the methods explored here is to produce Global
IDs (GIDs), sometimes called Globally Unique IDs (GUIDs). This
means each individual ID string should be unique within a particular
global scope. The scope can be an application itself, a computer system,
a network or an organization. Its definition is up to the implementer
and can vary based on the requirements of the application.

It however does not assume that the GIDs will be unique universally.
This means that two instances of the global scope may produce IDs

Generating Global IDs 2

that collide. For example, if a web app is produced which creates GIDs
for a list of users, these ID strings must be unique within the scope of
the app and the list of users. However, a different app producing IDs
for users in another organization unconnected to the scope of the first
project, may also produce IDs which could end up being the same. This
is acceptable as the two scopes are separate.

1.3 Disclaimer

As a technologist, I have long years of experience dealing with the
topics described here. However, this document is provided for educa-
tional use only. I am no expert on cryptography or number theory. Ev-
erything written here is provided as is and with no warranty expressed
or implied. Use at your own risks, and do your own research before
implementing the code discussed here in a critical environment.

2 Universally Unique Identifiers (UUIDs)

The first method we will touch is the UUID function described in the
Introduction. This has become a popular method for creating IDs be-
cause it offers various benefits:

• ID strings created by a UUID function are assumed unique univer-
sally, meaning that no ID will collide with any other ID created by
the same function, regardless of time, scope, application or any-
thing else.

• This in turn allows them to be not only unique but persistent, being
useful for any type of application, even long term archival, as no
collision is expected at any point in the future.

• They are a fixed 128 bits size with a predictable format.

• No central authority is used.

The last point is a very important benefit. For example, domain names
on the Internet can be considered as a GID. They are unique among the
scope of Internet domain names. However, they require a central au-
thority, in this case ICANN [2], to make sure no two persons decide to
use the same domain name. In the case of UUIDs as defined by RFC
4122, they are assumed unique thanks to programming.

Generating Global IDs 3

A proper UUID looks like this:

13152fae-d25a-4d78-b318-74397eb08184

The RFC describes not one but five different ways to create a UUID.
Each is based on the same basic principles, but vary slightly. A UUID
is made up of 16 octets totaling 128 bits. The basic idea is that it in-
cludes information that is assumed to be unique universally, meaning
that no other system will create the same UUID anywhere in the world,
regardless of input parameters. This may include the event happening
at the exact same time, executed for people with the same name, or
any other number of variables coinciding to be similar.

These are the versions of the UUID specification:

1. The first version uses the current time, down to the nanosecond,
concatenated with the machine's MAC address. This takes advan-
tage of the fact that MAC addresses are supposed to be unique, and
that the computer's processor is unlikely to run the event twice in
the same nanosecond. However, in practice a MAC address can
easily be changed, and there is no way to know if a future com-
puter will be able to run this event twice in a short enough time to
make the ID non-unique.

2. Version 2 was implemented on Unix systems and replaces the time
stamp with the POSIX UID, which is the user ID on a local Unix
system. This is good when producing IDs for individual users on a
POSIX compliant system.

3. This version uses a namespace, along with a URL, domain name,
object identifier or other text string to uniquely identify an event,
then uses the MD5 hash of it. This is a good choice when creat-
ing IDs for items, perhaps a list of web sites stored in a database.
By using the hash of the actual site, each ID is guaranteed to be
unique. However, if two distinct systems choose the same names-
pace, then these could collide.

4. Version 4 relies solely on unique numbers. Past the 4 bits reserved
for version, 122 bits are generated by a pseudo-random function.
This is perhaps the easiest and thus most popular method of gen-
erating UUIDs out there.

5. Finally, this version is the same as Version 3, however it uses SHA-
1 hashes instead of MD5.

Implementation of UUIDs may be the strongest strength of the spec-
ification, since there are tools and libraries that can produce IDs for

Generating Global IDs 4

you already available in most operating systems and programming lan-
guages. Linux systems by default ship with the uuidgen utility that can
produce random or time based IDs.

PHP does not include an existing function to create a UUID following
the specification, but it is fairly simple to create. The following will
generate a valid Version 4 UUID:

function make_uuid()
{

$a = openssl_random_pseudo_bytes(16);
$a[6] = chr(ord($a[6]) & 0x0f | 0x40);
$a[8] = chr(ord($a[8]) & 0x3f | 0x80);
return vsprintf('%s%s-%s-%s-%s-%s%s%s', str_split(bin2hex($a), 4));

}

$id = make_uuid();

It's important to note that when creating your own ID generating
functions, it's crucial to understand which functions to use. For exam-
ple, the mt_rand() function in PHP creates random values that could be
used here, however when digging deeper, one would find thatmt_rand()
generates these values solely based on the system time, which means
they could be predictable and they could be non-unique. This is why
entropy is needed, provided here by openssl_random_psudo_bytes().
A discussion of cryptography is outside the scope of this document, but
RFC 4086 [3] provides a good background.

As you can see, UUID is a strong and very useful specification, and
already in used by many. However, there are a couple of pitfalls. First,
even random numbers could theoretically collide. Second, if the ID is
generated based on the MAC address of the system, or a specific text
string like a URL, those may not be unique. Even if assumed to be
unique when coming out of the factory, MAC addresses can easily be
changed by a user, for example. Finally, UUID strings are fairly long.
This can be fine when storing those IDs in a database, but not that
useful if they have to be showed as text to users, or remembered as
part of URLs.

3 Session IDs

Session IDs are unique identifiers used to identify a session, typically
a unique dialog between a web application and a user, in order to pro-
vide context. This allows the user to leave a web page and come back,

Generating Global IDs 5

or navigate throughout various pages, and maintain their logged in sta-
tus. Session IDs are very popular, and most programming languages
provide automatic ways to generate them.

In PHP, you can generate a session ID in the following way:

$id = session_id();

The benefit of this approach is that session information is kept by the
programming interface itself. By using functions like session_start()
and the $_SESSION variable, you can keep keys and values unique to
a user. Many web apps use this method in order to generate an ID
for each session and then track users as they interact with the server,
until they finally log out. This ensure that connections can always be
identified correctly, regardless of the amount of users making requests
concurrently.

Session IDs however have some downsides. First, while the chance of
collision is low, these IDs should not be considered unique. By default,
PHP takes the following items to construct a session ID:

• The IP address of the connection, which ensures that every IP is
guaranteed unique.

• The current timestamp, meaning that every ID produced at differ-
ent times will be unique.

• Two sources of randomness, typically cryptographically secure ones
such as /dev/urandom on Unix.

These items are then hashed together (using MD5 by default) and
that makes the session ID. From this knowledge, you can easily see
when and where a collision may happen. It would take two users from
the same IP address, creating the ID at the same exact time, with
the random number generator providing the same result for both IDs.
Depending on the scope of your project, this may well be satisfactory.
Another possible downside is the length of the ID. An MD5 hash is lower
than a UUID, at 16 bytes, but may still be too long if you wish to have
users see it or try to remember it as part of a URL, for example.

4 Custom ID creation

Many more methods of generating Global IDs exist out there, and you
may be tempted to create your own. There are good reasons to do this,

Generating Global IDs 6

but also some pitfalls that need to be avoided. Certainly, the simplest
way to create a unique ID would be the use of a random number. This
can be trickier than at first glance, however, as no computer can gener-
ate truly random numbers. They all rely on pseudo-random generators,
which need to have enough entropy. Plus, random numbers can collide.
The chance of that happening depends on how many bits the number
has, meaning that for a good implementation, you may require quite a
bit of length.

Another popular way to ensure uniqueness is to concatenate various
items, which is used by the previous two methods. This may be your
best bet since you can then select which items to pick based on your
requirements. For example, if you create a web app, you may want
to take items that are unique to network connections such as an IP
address. If you generate database entries for real world products, then
perhaps these items have QR codes that can be used.

Also, you may wish to add other requirements that impact unique-
ness. Perhaps you are making an online form and you actually don't
want the same user to be able to generate a new ID every nanosec-
ond. Here, creating a Global ID that takes its uniqueness only based
on a time stamp down to the second will ensure that another ID can't
be created within this 1-second time frame, thus rejecting potential
spam or denial of service attacks. Security on the Internet is a complex
topic, and you should read RFC 3631 [4] for a good overview of other
mitigation methods.

In our case study, we will implement a function that creates a GID
based on the time and the user IP, and must be small enough in length
to display in URLs and for users to optionally remember them. This will
create enough uniqueness for our scope, which is allowing any one IP
to create an entry in our web app at the most once per second. Note
that this scope is specific to this one example. You may wish to change
the IP address to existing user IDs, or to a combination of items such
as IP, browser agent, and a random source. The more items you add,
the longer the length of the resulting ID.

Here is the code in PHP:

function make_id()
{

$a = dechex(str_replace(".", "", $_SERVER['REMOTE_ADDR']));
$b = dechex(time());
return base_convert($a . $b, 16, 36);

}

$id = make_id();

Generating Global IDs 7

This function generates an hexadecimal value for the IP address,
along with the current timestamp, then converts from base 16 to base
36. One nice thing about base conversion is that no information is lost,
and the full breath of the ASCII alphanumerical values can be used to
reduce the length of the ID. Here are some example values created:

1sr2jco9laiu
1vnfi6ffb
6fd9rl9ahr8k4g
1qpfx5r29m7qm

As you can see, the values produced are between 9 and 14 bytes in
length. This is far shorter than the 20 bytes of SHA-1 and even 16 bytes
of MD5. It is of course possible to produce smaller IDs, for example
simply using the time, but as a result you would lose uniqueness to a
point that may no longer be acceptable for your particular scope.

5 Additional constraints

So far we've presented the basics of generating GIDs, but depending
on the scope of your work, you may have many more constraints to
take into account. For example, most of the built-in functions generate
alphanumerical strings, but perhaps you require numerical IDs. For
such a situation, you can still use the functions we discussed, and then
simply convert them to base 10 using code like this:

$id = base_convert(make_id(), 36, 10);

Another constraint is where those GIDs will be stored. In most cases,
they are kept in memory, such as a session ID for a web app, or stored
in a database, such as user IDs that have access to specific resources on
a system. But sometimes they need to be sent over shared networks.
In these cases, IDs may need to not only be unique, but also hashed
or encrypted. A hash is a one-way conversion from clear text to fixed-
sized. Note that not all hash functions are the same. MD5 for example is
known to have collision vulnerabilities, while SHA-1 has known attacks.
As such, while they are fine to generate IDs, they should not be relied
upon for secure communications. Instead, SHA-256 should be used.
Wikipedia has a good article [5] on the subject of hashes.

IDs stored in a database can often be gibberish, but when it's some-
thing that has to be remembered by a user, your requirements may not
only be about length, but also the actual text used. This is why most
user IDs are taken from another source, such as part of the name of

Generating Global IDs 8

a person or an email address. Back in the early days of the Internet,
user IDs were typically numbers. People who used the instant messag-
ing system called ICQ had to memorize their numerical IDs, while early
mail systems used gibberish as well. Generating unique GIDs that can
be easily remembered may bring an additional level of difficulty. For
example, a name is typically a poor ID, because many people share
the same name. An email address is far better, since thanks to the
uniqueness of domain names, each email address is unique.

But what if you are trying to create user IDs that will be used to gen-
erate email addresses, meaning that you don't already have an email
address you can use? A typical way to do this is by using a person's last
name, the first letter of their first name, then adding a single digit at
the end should the ID collide. This ensures uniqueness and presents an
ID that is still human readable. While no method will be perfect, often
requirements can be attained with creative thinking.

Here is a code sample that may accomplish this. It assumes an ar-
ray $userids containing a list of existing users, but can be modified to
check against a database:

function make_id($first_name, $last_name)
{

$k = 0;
$b = $a = $last_name . $first_name[0];
for ($i = 0; $i < count($userids); ++$i)
{

if($a == $userids[$i])
{

$a = $b . strval($k);
$i = 0;
$k++;

}
}
return $a;

}

$id = make_id("John", "Doe");

Finally, GIDs may need to be created in a distributed manner. What
if you scale your application to several instances, each accepting con-
nections from users who may need to create IDs in a central database
and thus need to be unique?

Typical GIDs should bemade using non-deterministic algorithms, mean-
ing that someone cannot guess what their ID will be based on the input
values. This is a basic security requirement, and also helps with unique-
ness. For example, if your ID generating function only takes known val-

Generating Global IDs 9

ues such as the time stamp and IP address, it will create a predictable
ID. This means it should never be used for sensitive applications, like
as a password. However, this determinism can be useful in the case of
distributed systems, where you need to be able to predict IDs made by
other instances. Wikipedia has an article [6] on the topic.

6 Conclusion

We've seen various different methods for creating Global IDs. Each
method has its strengths and pitfalls, and as a result no one method
is best. What you use depends on your requirements and the scope
you attempt to address. The more bits needed for uniqueness, the
longer your ID will be. We've seen the difference between using pseudo-
numbers and concatenating various items, along with potential pitfalls
of both methods. We've also seen some practical examples of creating
IDs, and built-in methods that can be leveraged.

One source of uniqueness that is used in almost every method is
time, because it's a great way to ensure persistence. Another source
is a pseudo-random generator. The generation of true randomness is a
difficult topic, and Wikipedia has a good article [7] about the subject.
In many cases, just these two sources may be enough, but others can
be used based on requirements, such as the MAC address, IP address,
or some other value.

Global ID generation is a topic that touches both software develop-
ment as well as cryptography and maths. As such, it's important to be
careful when reinventing the wheel. If security is a key requirement,
proper care should be taken when determining whether your numbers
are unique enough or not. It's possible to have truly unique IDs for
a specific scope, but not for all scopes. If all inputs can be modified,
then there is a chance of collision, as slim as it is. Your job is often
determining how slim the chance is, and whether that is acceptable.

Often, the creators of large and complex applications have no idea
that their products would grow to the sizes that they did when they
first started. Even if you think your project is small, such important
tasks as creating unique IDs should be done correctly, since it's much
harder to fix down the road.

Generating Global IDs 10

7 References

References

[1] RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace
http://www.rfc-editor.org/rfc/rfc4122.txt

[2] ICANN: Internet Corporation for Assigned Names and Numbers
https://www.icann.org/

[3] RFC 4086: Randomness Requirements for Security
http://www.rfc-editor.org/rfc/rfc4086.txt

[4] RFC 3631: Security Mechanisms for the Internet
http://www.rfc-editor.org/rfc/rfc3631.txt

[5] Wikipedia: Hash function
http://en.wikipedia.org/wiki/Hash_function

[6] Wikipedia: Deterministic algorithm
http://en.wikipedia.org/wiki/Deterministic_algorithm

[7] Wikipedia: Pseudorandom Number Generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator

http://www.rfc-editor.org/rfc/rfc4122.txt
https://www.icann.org/
http://www.rfc-editor.org/rfc/rfc4086.txt
http://www.rfc-editor.org/rfc/rfc3631.txt
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Deterministic_algorithm
http://en.wikipedia.org/wiki/Pseudorandom_number_generator

	Introduction
	Audience
	Expectations
	Disclaimer

	Universally Unique Identifiers (UUIDs)
	Session IDs
	Custom ID creation
	Additional constraints
	Conclusion
	References

